
An Information Model for Use in

Software Management Estimation and Prediction

Ningda R. Li and Marvin V. Zelkowitz

Department of Computer Science

University of Maryland

College Park, MD 20742

Abstract

This paper describes the use of cluster analysis

for determining the information model within col-

lected software engineering development data at the

NASA/GSFC Software Engineering Laboratory. We

describe tile Software Management Environment tool

that allows manager's to predict development at-

tributes during early phases of a software project and

the modifications we propose to allow it to develop dy-

namic modols for better prediction of these attributes.

Keywor(ls: Cluster analysis; Data modeling; Mea-
mn'emen_; Software management; Tools

1 Introduction

Software management depends upon managers to

collect accurate (lata of the software development pro-

cess and on the prod|tction of accurate models upon
whi(h to use that dala. Lines of code is still the most

wid_dy used measure for cost and error analysis, even

though it is known to I)e inaccurate [8]. llowever, since
it is not known until the completion of a project, its
use as a predictive measure is not reliable. What are
needed are more accurate models of the software de-

velopment, process.

Current models are developed according to broad

categories, such as waterfall development, spiral model
dewqopment, cleanroom development, etc., with addi-

tional qualifiers giving a few attributes of the product

(e.g., real tithe, embedded application_ data base).

Second International Conference on

Information and Knowledge Management

Arlington, VA
November, 1993

Data is often collected and projects are compared to

historical baselines according to these general cate-

gories. For example, the COCOMO model [1] is based

upon a small set of predefined factors, and predictions

are made according to how a new project measures up
to these factors.

It is difficult for software managers, however expe-

rienced they are, to evaluate the status or quality of a

software development project, and make correct deci-
sions without accm'ale, reliable measurement models

and data. These data include metrics aimed at clari-

fying and quantifying some quality of either a software

product., or the development process itself [13].

Since we do not have accurate models of the soft-

ware development process, perhaps, we can use the

data itself to develop dynamic models of software

development that reflect the changing nature of the

development process. In this paper we study one

particular modeling technique, cluster analysis, as

a means for determining the underlying information

model present, in the collected software engineering de-
velopment data.

The importance of software management has led.
to the development of various software management

tools for aiding in this effort. These tools help soft-

ware managers get access to, visualize, and analyze

measurement data. The Software Management Envi-

ronment (SME) is one of those tools developed within

the NASA Goddard Space Flight Center Software En-

gineering Laboratory (SEL) [6], [12]. It is the purpose
of this paper to investigate the use of cluster analysis

within SME to enhance the ability of software man-

agers to predict and control the software development

process.

In Section 2 we describe the information model and

the measures used by SME In Section 3 we describe

10014023L 2-47

PRI_aFJ4f_ II_.A,_E BLANK NOT FiLML_



our use of cluster analysis to dynamically change our

information model, and in Section 4 we describe some

preliminary results of using our new model. We then

give our conclusions to this work.

2 Measurement in SME

For over 15 years the software engineering comnm-

nity has been studying various models of the soft-

ware development process. Concepts like Halstead's
software science measures, Putnam's Rayleigh curve,

Boehm's COCOMO model, among many others, are

all attempts at providing a quantitative model un-

derlying the software development cycle. Unfortu-
nately, most of these models are very general, and

while broadly describing the software process, do not

have the granularity to make accurate predictions on

a single software project.

As a way to further these studies, tile Software En-

gineering Laboratory was established to evaluate the

abow_ models and develop new models within a pro-

duction l)rogramming environment.

2.1 NASA/GSFC SEL

The NASA Goddard Space Flight Center Software

Engineering Laboratory is a joint research project

of GSFC Flight Dynamics Division, Computer Sci-
ences Corporation and the University of Maryland.

Data from over 100 projects has been collected since

1976 and a data base of over 50 Mbytes of mcasure-

ment data has been developed. Initially supporting

100,000 line FORTRAN ground support software for

unmanned spacecraft written by 10 to 15 program-

mers over a 2 year period for an IBM mainframe, the
SEL data base now includes a wider variety of projects

consisting also of Ada and C code for a variety of ma-
chines.

The SEL collects data both manually and automat-

ically. Manual data includes effort data (e.g., time

spent by programmers on a variety of tasks - design,

coding, testing), error data (e.g., errors or changes,
and the effort to find, design and make those changes),

and subjective and objective facts about projects (e.g.,

start and end completion dates, goals and attributes

of project and whether they were met). Automatically
collected data includes computer use, program static

analysis, and source line and module counts.

2.2 Measure Models

Data modeling often combines various measures in

order to evaluate attributes in a software development.

For example, classification trees were used as part

of the Amadeus project [9][10] and a variant of that

method was used within the SEL [ll]. In this case, a

tree is generated where each leaf node represents one

of several results. Based upon values for each mea-

sure, a path down the tree is taken until a result at a
leaf node is reached.

For each project, we can compare the collected data

over time with a predefined model of a similar project
from the data base. A basic measure model refers to

the expected behavior of a software development mea-

sure as a function of time [5]. Measures, developed
from the raw data collected by the SEL, include lines

of code, staff hours, computer hours, and changes and

errors. A measure model is usually obtained by exam-

ining the data for that measure over a set of projects

and averaging them. Time is described in terms of

the four major phases of software development within

lhc waterfall life-cycle: design, code and unit. test, sys-
toni I,est, and acceptance test) Measure behavior is

described in terms of percent completion of that mea-

sure at each distinct checkpoint.

Within the SEL, we describe one of these measure

models as a vector of 15 points, each representing the

percent completion of the measure at distinct dates

in the development cycle (generally 25% increments

through each phase). Table 1 shows the tabular repre-

sentation of a Lines of Code (LOC) model [5] and Fig-

ure 1 shows the graphical representation of the same
model. According to the LOC model, no code should

be written (luring the design phase, and most of the

code (76%) should be written during the code and unit

test phase.

For ease of use, we can use the vector representation
of the model:

[0, 0, 0, 0, 0, 6.86, 36.05, 53.99, 76.28,
86.82, 94.88, 96.09, 98.14, 99.58,100]

In general, a measure model can be represented by

the following vector:

P = [Po,Pl,P2,... ,P13,PI4]

aThe SEL does not collect specification data since that task

is performed by another group. This is reflected in the models

tha! the SEL develops, and is a good indication why no two

development models are easily transportable across locations.

10014023L 2-48



Phase % of Phase % of Total Lines

Design

Code/Unit
Test

System Test

Acceptance
Test

End

0

25

50

75

0

25

50

75

0
50

0

25

50

75

IO0

0.00

0.00

0.00

0.00

0.00

6.86

36.05

53.99

76.28

86.82

94.88

96.09

98.14

99.58

100.00

Table 1: Tabular representation of a LOC model

120

10o

80
%

LOC 60

40

20

Design

100

Code/ _esSi, A_ept.Unit Test lesr_

1 1 3 1 1 1 _-

4 2 4 "2 4 2 4

Phases

l I 3

Start 4 _ 4 End

Figure 2: LOC patterns

100

80

% 60
LOC

40

2O

Start _

Design

_4_n __

1 3

2 4

Code/ Sys. Accept.
Unit Test. "lest Test

/

1 I 3 1 1 1 3
4 "_, .t 7 .i ; _ End

l)]lases

il00

Figure 1: Graphical representation of a I,OC model

with po = 0, 0 _< p, _< 100 for 1 < i _< 13, and

p14 = 100.

We will use measure pattern to refer to a measure

model derived from a single project. Essentially, we

produce a measure model as the average of some set
of measure patterns.

2.3 SME

The Software Management Environment was devel-

oped to help software managers carry out manage-
ment activities like observation, comparison, predic-

tion, analysis, and assessment [6]. In order to provide

these functions, SME uses measurement data from

current and past projects from the SEL database, re-

search results in terms of models and relationships,
and manager experience from the past,

SME was initially built with a fixed set of measure

models. For example, for LOCI (lines of cod,:), the

most apparent predictor seemed Io b(, programming

language. Therefore, SME originally had two models
of LOC based upon language- Ada and FORTRAN.

Each project was classified according to the measure

model it was expected to adhere to, and for each mea-

sure type, a predefined measure model was stored in
the data base.

Some of the features of SME at',.' descril)ed below.

Measure models in SME

Currently in SME, a measure model is derived from

a set of projects with the same characteristics, such

as development methodology, programming language,
and development environment. SME decides which

measure model to use for a project measure of inter-
est based on the characteristics of that project. For

example, Figure 2 shows four LOC patterns of four

different projects with the same characteristics. SME

creates a LOC model by averaging these patterns, but

is the resulting model a good representative of actual

LOC behavior? This is the basic question behind our

research plan, and our goal is to develop, dynami-

cally, LOC (and other) models that better represent
attribute behavior.

Observation and Comparison

To monitor the progress of a project., managers need

10014023L 2-49



Mgr's I 1
Plan 21

Sched. 87
DESGN

300K

200K

LOC

100K

MSME I1
odel 21

Sched. 87

10 10 03 09

90
CODET _YSTE ACCTE

os06 15
88 89 90 90

Figure 3: Growth in 'Lines of Code' for/:'1

cunmlative growth data for measures such as effort,

size aml errors. SME provides graphic display of the
actual ,'ollect,_d data like shown in Figure 3, in which

the solid curve tel;resents an overall view of projecl

Pl's growth ill size (lines of code) over a specified cal-

endar time. Tile dotted curve in Figure 3 shows a

LOC model of a similar project or the LOC measure

model from the data base to permit the manager to

compare project data to a model which indicates the

"normal behavior" for such projects. Comparison can

also be made between projects.

Prediction

SME can also predict a measure's completion value

for an on-going project, by using the appropriate mea-
sure model scaled up to the actual time schedule of the

new project. Using the initial data collected from a

project, final values can be estimated giving the man-

ager an indication of the measure's possible future be-
havior.

Analysis and Assessment

SME can help the manager identify the probable

causes of any unexpected behavior for a measure, and

assess the quality of a project based on all the mea-
surement data. For each measure, a knowledge base of

cause-effect relationships is maintained. So, for exam-

ple, if a given project seems to have too many errors
at a certain point in the coding phase compared to the
error measure model, a rationale can be provided to

the manager, such as:

TEAM IS REPORTING INCONSEQUENTAIL ERRORS

INEXPERIENCED DEVELOPMENT TEAM

POOR USE OF METHODOLOGY

COMPLEX PROBLEM

etc.

Similar idea can be found in [4]. What is desired

is a mechanism whereas this knowledge base can be

updated dynamically as projects evolve.

3 Cluster analysis

Cluster analysis is the technique for finding groups

in data [7] that represent the same information model.

Biologists and social scientists have long used it to
analyze their data. Here, we use it to find similar

measure patterns within the collected software devel-

opment data.

Clustering was used previously in an early SEL

study [3] in order to determine possible patterns in

l_roject.s by clustering t]_e modules that make up the

project. 'Fl,e resulls were somewhat inconclusive due

to large variances within small modules and the many
different attributes that contributed to the single value

that was clustered. In this current study, we try to

separate out. different, attributes and study their ef-

fects over time. This gives greater precision to the

data we are looking at and eliminates much of the

variability found in the earlier study.

3.1 Clustering

As stated in section 2.2, a measure pattern can be

represented by a vector. Clustering is a method to

determine which vectors are similar and represent the

same or similar physical objects. There are several

clustering and modeling algorithms, including:

• Euclidean distance. Each vector represents a

point in n-space. Points near one another are in
the same cluster.

• Cosine. Each measure pattern represents a vector

from the origin. The cosine of the angle between

two vectors represents the similarly in their com-

ponents and hence their closeness.

• Optimal Set Reduction. OSR generates, based on

search algorithms and univariate statistics,.Iogical
expressions which represent strong patterns in a

data set [2].

10014023L 2-50



100

8O

% 60
LOC

40

20

Start

Design Code/ _esStAccept.UnitTest 'lest

//
1 1'3 1 I 3

4 2 4 4 2 4

Phases

100

i _ 1 3 End
2 4 2 4

Figure 4: A cluster of LOC patterns

Several other algorithms also have been used.

For our initial investigation, we are using the Eu-

clidean distance between two vectors as a degree

of similarity between two measure patt+'rns. For

example, if P = [Po,PI,P2,.-.,Pla, lh4] an(I ,V =

[710, hi, n2, . . ., n13 , /114] are two measure 1)atlel'ns,

then their Euclidean distance is

ed(P, N) = k/(Po- "o) _"+"" + (Ih4 - o,.)) 2

Two patterns are assumed similar and are in the same

cluster if and only if ed(P, N) < _.

Note that by varying r we can adjusl the size of

the clusters by specifying how close two w'ctors must

be in order to be in the same grouping. Since single
vector clusters provide no information, we wahl to ad-

just s so that we generally have clusters of at least 3

vectors without including vectors that represent fun-

damentally different curves. Figure 4 shows a cluster

of three LOC patterns.

3.2 Cluster model

A cluster model is the average of all measure pat-

terns in one cluster. It closely describes the measure

behavior for all projects in the cluster because mea-

sure patterns in the same cluster are similar. Instead

of choosing a predefined measure model for a project

measure of interest using the project's characteristics

(as is currently the ease with SME), a cluster model
can be dynamically selected for the project measure

depending on which cluster its pattern best fits.

A fl_rther advantage from the current, static ap-

proach of SME, is that alternative models can be de-

veloped for each measured attribute. Within SME,
the same measure model is used for all measured at-

tributes. For example, if the defining characteristic is

Ada for the LOC measure, it will be the Ada mea-

sure model for each other measure (e.g., error, effort.).
With dynamic clustering, measure models can vary for
each distinct measure.

For an ongoing project, a manager's estimate of

schedule and measure completion values are used to

derive its measure patterns. Estimates are replaced

by real data once they become available. So a project

measure's closest cluster model may change as the

project develops.- In Section 4.3 we discuss how to use

this information to improve on the predictive capa-

bilities of SME. On the other hand, since a project's

development methodology or programming language

usually do not change during a project's development.

life-cycle, the static measure model chosen by the cur-
rent implementation of SME based on those charac-

teristics does not change.

Similarly, SME does an assessment of a project's

real data compared to the measure model's estimate

I)y use of a predefined set of attributes. But by look-

ing at the attributes that are common for all projects

within a given cluster, we may be able to determine

general characteristics for any new project that falls

within that cluster. This list of attributes will dy-

namically evolve over time instead of being a static
description of project behavior. For example, if all

projects within a given cluster were previously lale in

delivery, it may be useful to report this information

to the manager of a new project that falls within this
cluster.

This allows the knowledge base to grow and change

dynamically as projects develop. It. does not require
the predefinition of a few models - which may not even

accurately represent the actual development model,

only a manager's poor estimate of one.

4 Evaluation of Clustering

Before implementation of our clustering approach
within SME, we evaluated the effectiveness of clus-

tering with a subset of the SEL data base. Mea-

surement data from twenty-four projects in the data
base were clustered using eight different measures:

computer hours (CPU), total staff hours (EFF), lines
of code (LOC), modules changed (MCII), module

10014023L 2-51



100

80

% 60
LOC

4O

2O

Code/Design Unit Test

3 --

Pla --
P19--

6 ....

P16 ....

Accept.
'lest

I

100

- ",_

/

.'" g

424 2

Phases

1 1 3 1 1 a EndStart _ _ _ 4 2 4

Figure 5: Two clusters of MCH patterns

count (MOD), reported changes (RCH), reported er-
rors (RER), and computer jobs (RUN). We then stud-

ied common objective and subjective attributes of

projects in the same cluster.

For example, Figure 5 shows Itwo clusters of MCII

(module changes) pattert,s. Cluster C1 consists of pat-
terns from projects Pa, P_3 and P19, and cluster C2

consists of patterns from projects P6, Pt6, P20- We

observe that more than half of the module changes

were made during the code and unit test phase for

projects in C2 compared to about twenty precent for

projects in C1. Consequently, only twenty percent of

the module changes were made during the system test

phase for C2 compared to about fifty percent for C1.

4.1 Objective characteristics

Project characteristics of the two clusters are sum-

marled in Table 2 and 3 respectively. We observe that

if computer language is the basis for choosing a MCH

measure model, as is the ca._e with the current ver-

sion of SME, all six projects will use the same MCH

model since they all use FORTRAN. In this case, clus-

tering discovers the two vastly different behaviors of
MCH measures which are undetectable with the static

approach.

In addition, some commonly used discriminators do

not appear to be significant with these clusters. Size is

often used to classify" projects, yet cluster C1 contains

projects from 16K to 179K source lines. The projects

represent two very different hardware and software en-

vironments (IBM mainframe and DEC VAX VMS)

and each project in Cl represents a different applica-

Attributes

Computer

Language

Application

Reuse (%)
Time (wks)

Size (SLOC)

P3
IBM

FORT.

AGSS

10.1

116

178.6

P13

DEC

FORT.

SIM.

30.7

119

36.6

Pl 9

IBM

FORT.

ORBIT

38.1

109

15.5

Table 2: Project characteristics for cluster C1

Attributes ] P6

Computer IBM

Language FORT.

Application AGSS

Reuse (%) 19.5

Time (wks) 97

Size (SLOC) 167.8

PI 6

IBM

FORT.

AGSS

1.9

87

233.8

P20

IBM

FORT.

AGSS

I0.0

147

295.4

Table 3: Project characteristics for cluster C2

tion area. (However projects in ('._, aro more homoge-

neous; they all represent relatively large 168K to 296K

attitude ground supporit sysitems Imi]l as mainframe

IBM applications.)

4.2 Subjective characteristics

Subjective data for each project is stored in the

data base as an integer between 1 (low or poor) and

5 (high). Each project manager fills in these values

at. the end of a project based upon experiences during
the development. For each cluster we ,'etrieved those

subjective attributes that diffcre,1 Iw al mo.t 1 within

the cluster, thus indicating a common feature for those

clustered projects. This information can then be fed

back to the manager of a new project thai falls within

that cluster to provide an indication of probable future
behavior.

Projects in cluster C2 have commou ratings on the

following subjective attributes:

Tightness of schedule constraints: 3
Access to development system: 3

Timely software delivery: 4

We notice that their rating for timeliness of software

delivery is relatively high. This could be a direct re-

sult of the fact that most module changes were made

during code and unit test phase.

10014023L 2-52



Design

140
120

1001

s°r
40

20

Start _ g _
1 3 1_ 7- 1 3

4 2 4 _ 4 2 _ End

Phases

Code/ _esS{, Accept.Unit Test Test

1

150

100

Figure 6: Prediction for CPU

4.3 Predictive models

The two clusters of Figure 5 are easiest to mea-
sure when all data points for each measure model are

available, tlowever, it is the very nature of predic-

tive models that some of this data is incomplete. We

are currently altering SME's predictive capabilities to
take this into account.

If data is available for new project P up through

point i (e.g., values for po,pl,..-,pi), then clustering

for P against each existing cluster will be only with

respect to these i + 1 points. That is, for each duster
C, it will be assumed that Pi and ci have the same

valu,, aJld P's other values will be scaled accordingly.

Clustering wilt determine which cluster has the closest

shape to P's shape.

Once a lnatching cluster is found, it will be as-
sumed that project P has the same characteristics as

this found cluster and the succeeding values for P will

match the cluster's measure model for points i + 1
through 14.

The effect will be to scale P's original estimate with

respect, to the ch, ster's estimate. For example, in Fig-

ure 6, if the cluster estimated a 50% completion by

point 8 and the actual data showed a 75% "comple-
tion," then it can be assumed that the actual con>

pletion will be 150% since the relevant cluster is only
half finished. In this case it can be assumed that the

manager underestimated the resources needed for this

project. We are currently modifying SME's graphical

interface to show these predicted curves.

The predictive model for project P depends upon

both estimating the total resources needed in order to

compute the percentage for point Pi and estimating
the schedule in order to determine how far one has

progressed in the current development phase. Either

one, however, may not be accurate. For example, cur-

rent point P6 represents 50% coding, yet that is only

known when coding is complete. The current date

may possibly range from perhaps the 25% level (and

hence realty represent point Ps) to the 75% level (and
hence really represent point Pr) depending upon how

accurately the initial schedule was set up. The true

date will be known only after the coding phase is com-

pleted. However, in the above paragraphs we have de-
scribed a mechanism to estimate resource needs when

we asst, me that the schedule is correct.

On the other hand, if the latest available project

point PI is scaled to a cluster model horizontally along

phases instead of vertically (i.e., by changing the es-

timated schedule), we can predict future changes in

project schedule. However, since only discrete mile-

stones of a schedule are used, they need to be quan-

tilled before numerical scaling can be applied. We

are Iookiug at extending the SME predictive model in
order to estimate both the resource needs as well as

potential bounds on lhe schedule based upon current
data.

It should be realized that the model's predictive

capabilities improve as a project develops. Very few

points are available for prediction early in the develop-

ment cycle h'ading to 5_w differences anmng the var-
ious clusters. On the other hand, late in the devel-

opment cycle where there is more variability among
the clusters, it may be too late to change develop-

ment models to account, for any potential problems.

llow well the earl)' predictions lead to significant dif-

ferences in project development attributes is obviously

an issue we need to investigate.

4.4 Model evaluation

Aside from its primary use as a tool to aid man-

agement in predicting future behavior on a current

software development project, use of cluster analysis
permits SME to be used as a tool to evaluate new

models. If a model is proposed that describes some

attribute of development, that is collected by the SEL

data base, then all projects within a cluster should

exhibit that attribute to a great extent.

For example, the SEL is currently planning to en-

10014023L 2-53



hance the SEL data base with additional predefined
measure models in addition to the two models used

at present. Often the following attributes (and their

relevant values at NASA) are viewed as important at-
tributes of a development, methodology:

• Computer use - IBM or DEC environment

• Reuse of existing source code Low, medium or

high reuse of existing source code

• Language - FORTRAN or Ada as a source pro-

gramming language

• Methodology - Cleanroom or standard NASA wa-

terfall development method

By choosing one value from each category, the SEL can

develop 24 possible models. A subset of these will be

built into the SEL data base as predefined models for

each project and each project will be assigned to one of

these categories. However, while they are often viewed
as crucial attributes, are these really discriminators

useful to differentiate among projects?

If these are really discriminators of projecl devel-

opment, then projects within a single cluster should

all consist of tile same predefined measure model (or

at. least predominately so). We can then use our clus-

tering approach to determine the effectiveness of the

new proposed models.

We can also use clustering to determine if there
are any relationships among measures. If a cluster for

Reported Change (RCH) consists of the same l)rojects
as a cluster for Reported Error (RER), this indicates

that those two measures are closely related. If projects
A and B are in the same cluster for CPU, LOC and

RUN, then tl,ose projects are somewhat related.

This approach can be extended to any quantitative

model. Projects in the data base can be grouped ac-

cording to how well they meet the discriminators of

any new proposed measure. The projects can be clus-
tered, and if the models are appropriate, then clusters

should be somewhat homogeneous•

For example, cleanroom is a technique that ad-

dresses early verification of a design that should result

in fewer resulting errors (with less testing necessary)

later in the development cycle. If so, then measur-

ing reported errors (RER) per computer run (RUN)
should cluster cleanroom projects together, and the

plots should show high mea.sure model values early in

the development cycle. We can use SM E to test such
claims from this and other proposed models.

4.5 Evaluation of clustering

Clustering is effective in distinguishing measure
behaviors. For most of the measures studied, we

were able to yield clusters that differentiated behavior

among the projects, whereas the current SME would
consider them all similar and use the same measure

model on that data.

A current weakness, however, is that the result-

ing clusters yield few common objective or subjective
characteristics. We believe that this is due more to the

nature of the current subjective files within the SEL

data base than in the clustering methodology itself.

The current data files are developed by the project

managers and contain attributes about the project

(e.g., external events such as schedule and require-
ments changes, team composition, environment com-

position). There is little about how management was

performed (e.g., we didn't test. enough, we started cod-

ing too soon)• This is understandable given how the
data was collected. We need to develop methods to

collect this latter data in a non-threatening manner

from each project manager so that it can be fi,d back

to future project managers more effectively.

5 Conclusion

In this paper, clustering is presented a.q a mech-
anism for dynamically determining and altering the
information model that describes certain attributes of

the software development process• This permits the

software manager to more accurately predict the fu-

ture behavior of a given project based upon similar

characteristics of existing projects in a data base. We

believe the resulting cluster models are fairly accurate
indicators of such behavior.

Clustering also permits rationale for deviations
from normal behavior to be determined dynamically

and are easier to generate than the existing expert

system approach. Preliminary evaluation of cluster-

ing leads us to believe that the resulting models are

fairly accurate indicators of such behavior.

In addition, it appears that some often used dis-

criminators may not be totally effective in classify-

ing projects. Size, programming environment and ap-

plication domain may unnecessarily separate projects
into categories that are ultimately the same (e.g., scc

100t4023L 2-54



Tables 2 and 3). Obviously, this needs further study.

We are in the process of modifying NASA/GSFC's

SME management tool for incorporation of these new
models into the tool. We believe that this should

greatly improve SME's predictive capabilities. Mod-

ification of the data in the SEL subjective data files

should greatly aid in the analysis and assessment as-

pects of SME.

However, the process is far from over. We also

intend to stud)' alternative clustering and modeling

techniques (e.g., Optimal Set Reduction, Cosine) in

order to determine the best approach towards measur-

ing these critical attributes. In addition, we need to

observe how well early predictions of a project match

with subsequent, observations in order to be able to
use SME as an effective management planning and

tracking tool.

6 Acknowledgement

This resem'ch was supported in part by grant NSG-
5123 from NASA/(;SFC f,iO the University of Mary-

land. We would like to acknowledge tile contribution

of Jon Valett of NASA/CSFC and Robert Hendrick of

CSC as major developers of the original SME system

and for their and Frank McGarry's (also of NASA)

helpful advice on proposed changes we are making to
SME.

References

[1] B. Boehm. ,q'oftware Engineering Economics.

Pren!ice [Iall, Englewood Cliffs, NJ, 1981.

[2] L. C. Briand, V. R. Basili, and C. J. Hetmanski.

Providing an empirical basis for optimizing the

verification and testing phases of software devel-
opment. In Proceedings of the IEEE International

Symposium on Software Reliability Engineering,

Research Triangle Park, NC, October 1992.

[3] E. Chen and M. V. Zelkowitz. Use of cluster

analysis to evaluate software engineering method-

ologies. In Proceedings of the Fifth International

Conference on Software Engineering, San Diego,
CA, March 1981.

[4] R. Chillarege, I. S. Bhandari, and et al. Orthogo-
nal defect classification a concept for in-process

measurements. IEEE Transactions on Software

Engineering, 18(11), November 1992.

[5] W. Decker, R. Hendrick, and J. Valett. The soft-

ware engineering laboratory (sel) relationships,

models, and management rules. Technical Re-

port SEL-91-001, The Software Engineering Lab-

oratory, NASA Goddard Space Flight Center,
Greenbelt, MD, February 1991.

[6] R. Hendrick, D. Kistler, and J. Valett. Software
management environment (sme) concepts and ar-

chitecture (revision 1). Technical Report SEL-

89-103, The Software Engineering Laboratory,

NASA Goddard Space Plight Center, Greenbelt,

MD, September 1992.

[7] L. Kaufman and P. J. Rousseeuw. Finding Groups

in Data: An Introduction to Cluster Analysis.

John Wiley & Sons, New York, NY, 1990.

[8] R. E. Park. Software size measurement: A frame-

work for counting source statments. Techni-

cal Report 92-TR-20, Software Engineering Insti-

tute, Carnegie Mello University, Pittsburgh, PA,
September 1992.

[9] A. A. Porter and R. Selby. Empirically guided

software development using m,.tric-bz_sed classifi-

cation trees. IEEE Software, 7(2):46-54, 1990.

[1O] R. Selby, A. Porter, D. Schmidt, and J. Berney.

Metric-driven analysis and feedback systems for

enabling empirically guided software develop-
ment. In Proc. 13 th lntern_tttonal Conference

on Software E_gineering, pages 288-298, Austin,
TX, May 1991.

[11] J. Tian, A. Port or, and M. V. Zelkowitz. An

improved classification tree analysis of high cost

modules based upon an axiomatic definition of

complexity. 111Proc. 3 "d h_ternalional Syrup. on

Software Reliability Engineering, Research Trian-

gle Park, NC, October 1992.

[12] J. D. Valett. Automated support for experience-

based software management. In Proceedings of

the Second Irvine Software Symposi_trn (ISS '92),
Irvine, CA, March 1992.

[13] A. yon Mayrhauser. Software Engineering: Meth-

ods and Management. Academic Press, Inc., San

Diego, CA, 1990.

10014023L 2-55




